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We study density waves in the flows of granular particles through vertical tubes and hoppers
using both analytic methods and molecular-dynamics (MD) simulations. We construct equations of
motion for quasi-one-dimensional systems. The equations, combined with Bagnold’s law for friction
[Proc. R. Soc. London Ser. A 225, 49 (1954)] are used to describe the time evolutions of the
density and the velocity fields for narrow tubes and hoppers. The solutions of the equations can
have two types of density waves, kinetic and dynamic. For tubes, we can show the existence of
kinetic waves and obtain the condition for dynamic waves from the equations. For hoppers, we
obtain the solutions of the equations up to the first order of the opening angle, which also show the
existence of kinetic waves. We reproduce density waves in the MD simulations for tubes. The waves
are believed to be kinetic, based on a few evidences, including a well defined flux-density curve. In
MD simulations of flows in hoppers, we find density waves, which are also believed to be kinetic.

PACS number(s): 05.40.4+j, 46.10.4z, 62.20.—x

I. INTRODUCTION

Systems of granular particles (e.g., sands) exhibit
many interesting phenomena [1-3]. The formations of
a spontaneous heap [4-7] and convection cells [8-12] un-
der vibration, and the segregation of particles [13-18] are
just a few examples. These phenomena are consequences
of unusual, and often complex, dynamical responses of
the system. Considering the complexity of the dynam-
ics, one is tempted to first have comprehensive under-
standing of the dynamics of granular media in relatively
simple geometries, and then proceed to more complicated
situations. Even for the simple geometries such as shear
cells, vertical tubes, and hoppers, granular media still
show complex dynamics. For example, granular particles
in a shear cell show not only non-Newtonian behaviors
[19-22], but also stick-slip motions [23] as well as density
waves [24,25]. Here, we study the flows of granular par-
ticles through vertical tubes and hoppers, whose geome-
tries are as simple as shear cells, but are less well stud-
ied. In granular flows through vertical tubes, Poschel [26]
found that the particles do not flow uniformly, but form
regions of high density which travel with velocity different
from that of the center of mass. The mechanism for the
traveling density pattern or the density wave is, however,
not clearly understood. The density waves are also found
in outflows through hoppers [27,28]. Especially, Baxter
et al. [28] show that the velocities of the density waves
are dependent on the opening angle of hoppers, and even
their directions can be changed. Furthermore, they find
the density waves only when they mix some amount of
rough sands with smooth sands. In MD simulations of
hoppers, the density field is found to be nonuniform [29].
Again, the mechanism for the density wave is not clearly
understood.

We first construct equations of motion for quasi-one-
dimensional systems. With Bagnold’s law for friction
[19], the equations are used to describe the time evolu-
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tions of the density and the velocity fields for narrow
tubes and hoppers. The solutions of the equations can
have two types of density waves, kinetic and dynamic.
The dynamic waves are similar to sound waves, while ki-
netic waves are due to the kinematics of the equations
[30]. For tubes, we can show the existence of kinetic
waves, and obtain the condition for dynamic waves by
a linear stability analysis. We also study the effects of
static friction, and find that it does not change the qual-
itative behaviors of the flows. For hoppers, we obtain
the solutions of the equations up to the first order of
the opening angle, and also show the existence of kinetic
waves. Next, we study the systems using molecular-
dynamics (MD) simulations. For tubes, we reproduce
density waves, and we find a few strong evidences that
the waves are of kinetic nature, which includes a well de-
fined flux-density curve and the average density depen-
dence of the velocities of the waves. We also study the
existence of dynamic waves by changing the inelasticity
of the particles, and do not find dynamics waves. In MD
simulations of flows in hoppers, we find density waves,
which are believed to be kinetic waves due to the strong
correlation between the density and the velocity fields.
For hoppers with periodic boundary conditions, we find
additional density waves, which eventually dominate. We
find some evidence that the additional waves are of dy-
namic nature. We, however, do not find dynamic waves
in a hopper with open boundary conditions. The results
obtained by these theoretical and numerical studies are
compared with the experiments.

This paper is organized as follows. In Sec. II, we
present theoretical results. Detailed discussions on the
definitions and properties of dynamic and kinetic waves
are given in Sec. IIA. The kinetic and dynamic waves
in tubes are discussed in Secs. IIB1 and IIB2, respec-
tively. Also, kinetic waves in hoppers are discussed in
Sec. IIC. We present the numerical results in Sec. ITI.
First, we define the interactions between the particles in
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Sec. IIT A. The results for kinetic and dynamic waves in
tubes are given in Sec. III B, and the results for hoppers
are discussed in Sec. IIIC. A brief summary as well as
the limitations of this work are given in Sec. IV.

II. THEORETICAL APPROACH
A. Dynamic and kinetic waves

Here, we construct equations of motion for flows in one
dimension, which will later be used to describe the time
evolutions of fields in vertical tubes and hoppers. Let us
define p(z,t) and v(z, t) to be the density and the velocity
at position = and time ¢, respectively. If we require the
mass of the system to be conserved,

—p+ —(pv) =0. (la

5P T 5. PY) [la)
Another equation comes from the momentum conserva-
tion,

7] .
v + pv = F(z,t), (1b)

P ot oz
where F(z,t)dz is the total force acting on the mass
within [z, z + dz] at time ¢.

There are two distinct mechanisms by which density
patterns can travel. One is due to the instability of
uniform-density flows to density fluctuations (“dynamic
wave” ), and the other is of kinetic origin (“kinetic wave™)
[30]. We now discuss both types of waves in detail, pay-
ing particular attention to their differences. In order to
make the discussion more concrete, we use a specific form
of the force

F(z,t)=p— 6%[)-0”@“- (2)
where p and v are constants. The form of Eq. (2), moti-
vated from a granular flow in a tube, is chosen such that
the discussion becomes more clear. The following are,
however, applicable for any form of the force.

We first consider the dynamic wave. The equations of
motion, Egs. (1), with the force given by Eq. (2) have a
solution of uniform density pq,

p(z,t)= po,
(3)
1-v
v(z,t)= p(() Ve,

We study the stability of the solution, Eq. (3), by a linear
stability analysis. For simplicity, we consider the case of
po = 1. The trial solution for the time evolution of a
perturbation of Eq. (3) is

p(z,t)= 1+ €, expli(kz — wt)] .
(4)
v(z,t)= 1+ €, exp[i(kz — wt)],

where €, and ¢, are constants. We want to study the time
evolution in a linear approximation, where we consider

terms up to the first order of e. The analysis is valid
only if a perturbation term is much smaller than unity.
Substituting Eq. (4) into Egs. (1), and discarding terms
higher order than ¢, we obtain

(@ = k)e, = ke, =0

k +i(1 —v)le, + [(k —w) —iule, =0,
whose solution is given by

_“Zk—iuim+i(1—u)]—u2 p
v : NG
The density fluctuation travels with velocity Re(w)/k,
where Re(w) is the real part of w. If Im(w) (the imagi-
nary part of w) is positive, the perturbation grows with
time, making uniform-density flow unstable. This mech-
anism for creating density waves, which is based on the
instability of the equations, is called dynamic waves.

We now discuss the mechanism for kinetic waves. For
an excellent introduction to the subject, please see Ref.
{30]. Consider a case where the system is divided into
two uniform-density flow regions with densities p, and
b, and the velocity of each region is determined by Eq.
(3) (Fig. 1). The equations of motion, Eqgs. (1), imply
that density and velocity fields [p(x,t) and v(z,t)] inside
ecach domain do not change. The system evolves only
by moving the interface. Let U be the velocity of the
interface. We also set the initial position of the interface
to be 0 without losing generality. Then, the position of
the interface at time ¢ is Ut. At a given time, we choose
an interval |—¢, €] which includes the interface. We then
itegrate Eq. (1a) in the interval

a 5] . .
AP = —[(e+ Ut)pq - Ut <
/ g len) = glle+ Ubpu + (e~ Utr] + gl

= (pa = po)U + Jb — Ja = 0, (7)

where the flux j is defined to be pv. Therefore the inter-
face, or any density fluctuation, travels with velocity

Uy=Jdel _ 2 (8)

FIG. 1. The time evolution of the interface between the
uniform flows with density p, and ps.
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Since the above mechanism for the travel of density fluc-
tuations is a consequence of a kinetic equation [mass con-
servation, Eq. (1a)], it is called a kinetic wave. Unlike dy-
namics waves, the fluctuations in kinetic waves cannot be
amplified, the system can only reorganize existing fluctu-
ations. The fluctuations are created by initial conditions
or by noises in the dynamics. Furthermore, kinetic waves,
in most cases, decay into uniform flows [30].

In general, flows in one dimension (1D) have both ki-
netic and dynamic waves. If a system is stable under
density fluctuations, existing dynamic waves will decay
exponentially, and only kinetic waves can survive. On
the other hand, if the system is unstable, the ampli-
tudes of the dynamic waves will grow, and they even-
tually dominate over kinetic waves. In order to illustrate
this point, we integrate numerically Egs. (1) to get p(z,t)
and v(x,t), where the force is given by Eq. (2). The inte-
gration is done using the staggered leapfrog method [31]
with the time step 0.001. We also use a periodic bound-
ary condition. The initial conditions are that p(z,0) is
a short pulse of higher density (1%) on the top of back-
ground density of unity, and v(z,0) is given by Eq. (3).
We first study the case of p = 2,v = —1. The behavior of
the dynamic waves is studied by a linear stability anal-
ysis. Equation (6) gives the dependence of w on k to be
2k, —2i. There is one marginally stable mode of velocity
2, and one stable mode of velocity 0. On the other hand,
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FIG. 2. Time evolution of density fluctuation with the force
given by Eq. (2): (a) Dynamic waves are decaying, while the
kinetic waves survive (u = 2,v = —1), (b) dynamic waves are
growing, and take over kinetic waves (up = ~2,v = —1).

the flux is given as
j=po=plmrriie, (9)

and the velocity of the kinetic wave, determined by Eq.
(8), is approximately 2. Since the system is not unstable
to density fluctuations, the kinetic waves, not greatly af-
fected by the dynamic waves, will survive for a long time
[Fig. 2(a)]. We now study the case of p = —2,v = —1.
Following the same analysis, w(k) is determined to be
2k + 2i and 0, one unstable mode of velocity 2 and one
marginally stable mode of velocity 0. The velocity of the
kinetic wave is approximately 0. The dynamic wave of in-
creasing amplitude (that of the velocity 2) is dominating
over the kinetic wave [Fig. 2(b)].

B. Density waves in vertical tubes

1. Kinetic waves in vertical tubes

We consider vertical tubes of narrow width, which are
filled with granular material. The particles will low down
due to gravity. This motion will induce the forces be-
tween the particles as well as the friction forces by the
inner walls of the tubes. We assume that these forces
follow Bagnold’s law [19]. The law, first found in a rapid

H(x)

Tz SN 6

Tzy COSE Tez SiN O cos b

(b)

FIG. 3. Hopper with the opening angle 26.
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granular flow, implies that the components of the stress
tensor 7;; are proportional to the square of the shear rate
A,

7i; = pBD? fi;(p)¥?. (10)

Here, pp is the density of the material which forms the
particles, and p is the volume fraction of the particles.
The density p is, therefore, pg times p. Also, D is the
average diameter of the particles, f;;(p) is a system de-
pendent function. Bagnold predicted the shear rate de-
pendence in rapid flows using a simple argument, which
was later confirmed by more elaborate calculations as
well as experiments [2,3,20]. In this paper, we will use
the law except in the case where the velocities of the
particles are considered to be very small.

Let the = axis (y axis) be the direction parallel (per-
pendicular) to the tube, where the positive x direction is
chosen to be upward. We consider the forces acting on
the granular material contained in [z,z + dz]. Since we
study only narrow tubes, we assume the material is ho-
mogeneous along the y direction. There is a gravitational
force given by —pgWdz, where g is the gravitational ac-
celeration, and W the width of the tube. There also is
a friction by the wall, which is —7;,dz, and pressure by
other particles, —d7,,/dz Ddz. The total force F(z.t)
becomes

v 2
F(a.t) = ~pppgW — sgn(v)paD*fay (¢) (3 )

v

*Dz% [PBszm(P) (5)2}
= —pppgW — sgn(v)pB fay (p)v*

7] .
T

where sgn(v) is the sign of v, and we assume the width
of shear layer to be of the order of D.

Having found the force, we now proceed to study ki-
netic waves in the system. We first consider the case
of no static friction. The steady-state velocity vs(p) of a
uniform flow is obtained from the condition that the total
force acting on the granular material is zero. Since we
consider uniform-density flows, the force-free condition
gives

US(p):‘\/I;g—u//fwy(p)- (12)

The flux j(p) is given by pppvs(p), then the velocity of
a small density fluctuation U(p) becomes

TABLE I. The velocity of kinetic waves in a tube for sev-
eral values of the average density.

N (nq) Velocity of kinetic wave
150 10.0 -41.0 + 2.0

225 15.0 5.0 £ 9.0

280 18.7 12.0 £ 11.0

337 22.5 113.0 &+ 4.0

TABLE II. The velocity of dynamic waves in a hopper for
several values of 6.

6 (deg) Velocity of dynamic wave

1.0 -49 + 3

2.0 -40 £ 5

4.0 -26 £ 4

6.0 21 £ 5

8.0 -18 = 4
A dj 1 3fz — pd, d

Up) = 22~ 4(p) _ L) fey(P) — pdfazy(p)/dp
Ap  dp 2 fzy(P)

(13)

Therefore the form of the force, Eq. (11), allows density
fluctuations to travel with velocity U(p). The condition
for the existence of kinetic waves is the balance between
the forces, which is not very sensitively dependent on the
exact form of the forces. Therefore they are very likely
to be seen in the experiments.

We now consider the effects of static friction on the
kinetic waves. By static friction, we mean one has to
apply a finite force in order to tangentially break con-
tacts between surfaces. There are two contributions to
the normal stress on the wall. One is a static pressure
P,, which is independent of the motion of the particles.
The other is due to the collisions of the particles on the
wall 7, given by Eq. (10). The total friction force is the
minimum of pgW — 7. and pu(ryy + Ps), where p is the
friction coefficient. If the shear force (gravity and fric-
tion) is smaller than u times the normal force, the total
force on the particles is zero, and the particles form a
stagnant zone of no movement [32].
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FIG. 4. Vertical tubes in two dimensions with width W
and length L under gravity. We apply a periodic boundary
condition in the vertical direction.
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Depending on the parameters, there can be two be-
haviors of the system. If the gravitational force pgW is
less than the friction due to static pressure pP,, the par-
ticles cannot move, and the system remains as a static
column. If pgW > uP,, the particles will start to move.
The steady-state velocity v/ (p) for given packing fraction
pis

vy | P9W — puP,/pB
vs(p) B \/f:ty(p) + nyy(Py (14)

which is very similar to Eq. (12). However, we have the
additional constraint that the shear force should exceed
u times the normal force, which gives

PgW — pB fay(p)v® > uP;s + pps fyy (P)v?. (15)

If we define v.(p) to be the velocity where the above
equation becomes an equality,

() Space (b)

ve(p) = v,(p). (16)

Since particles reach a steady state with constant velocity
v! even with the presence of static friction, we conclude
that static friction does not change the qualitative be-
havior of the flow.

2. Dynamic waves in vertical tubes

In this section, we study the stability of the uniform-
density flows through vertical tubes under density and
velocity fluctuations. We will follow the analysis pre-
sented in Sec. IIA. We start with the equations of mo-
tion, Egs. (1), with the force given by Eq. (11). Here, we
do not consider static friction. The uniform-density flow
solution with the density po is

Space

FIG. 5. Time evolutions of
(a) density and (b) velocity
fields of particles in a tube of
W = 1,H = 15. Fields at
a given time are shown as a
horizontal line of boxes. The
gray scale of each box is pro-
portional to the density and the
velocity in that region of the
tube. Regions of high density
are formed, and travel with al-
most constant velocity.
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FIG. 6. The flux-density curve for a tube
of W = 1,H = 15 averaged over time and
different values of V. The parabolic shaped
curve resembles that found in a traffic jam.
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p(z,t)= po = pBPo,

v(z,t)=1v9 = —\/;:;g(;‘:)

We study the stability of the solution by studying the
time evolution of the perturbation from the uniform-

density flow, given by
p(x,t)= po + €p expli(kz — wt)] ,
(18)
v(z,t)= vo + €, expli(kz — wt)].

Substituting Egs. (18) into Egs. (1), and considering only
up to the first terms of €, we obtain

(kvo — w)ep + poke, =0,
(19)
2’[)0

2
— Bﬂ dfz’.‘l s df:c:c . . _ kD 0
[9 W ( dp ikD ip €p + |i(kvo — w) —Wpo(fzy ikD foz)| € )

The solution of Egs. (19) is

2v
02— i =2 (f,, —ikDf,
poW(fy ikDf.2)Q

. v: [ df . df
klg— =8 (22¥ _ zz =
+1 [g ( dp ikD dp )] 0, (20)

where ) = w — kvg. The stability of the uniform solution
is determined by the imaginary part of w. Unfortunately,
since w depends on the exact form of the unknown func-
tion f;;, we cannot determine the stability of the flow.
Similar stability analysis on shear cells [25] and dissipa-
tive gases [33] shows that the system is unstable for small
coefficient of restitution e. Especially, in [33], this insta-
bility is traced back to the fact that pressure can decrease
as the density is increased. Here, we can show that Eq.
(20) has an unstable mode if df,./dp is sufficiently nega-
tive (smaller pressure for larger density), where the exact
criterion is a complicated function of k, f,, and fr.. The
stability of the flow is later checked by MD simulations,
where we will study the stability for various degrees of
the inelasticity of the particles.

i
C. Density waves in hoppers

Consider a two-dimensional hopper with the open-
ing angle 20, where the width at position z is given
by W(z) = Wy + 2tan(f)z (Fig. 3). Here we consider
only the positive ranges of xz. The equations of motion
for flows in hoppers are slightly different from those for
tubes. Since the width W is dependent on z, the conser-
vation of mass implies

9] 9
Wbt 5 (Wpo) =0, (21)
instead of Eq. (1a). Equation (1b), which is a conse-
quence of momentum conservation, still holds for hop-
pers, with a modified form of friction force. In our MD
simulations of hoppers, we find that the flows of parti-
cles in a hopper are almost vertical except within thin
layers along the sidewalls. We here assume that the
flows are completely vertical before a particle collides
with the wall. Since the sidewalls are tilted, the friction
per unit length has two contributions. One is the compo-
nent of 7, (friction force for tubes) parallel to the walls,
Tay €0s 6. Forces on the walls by the internal pressure 7.,
give an additional contribution, 7., sinf. Therefore the
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total force becomes
F(z,t) = —pgW + vaz(f,y cosf + f,,sinf)
0 2
“PBDa(fzzv )- (22)

Since we assume that the system is homogeneous in the
horizontal direction, we only consider hoppers of narrow
width W. We also assume 6 < 1, and the § dependences
of physical quantities (density, velocity) are calculated
up to the first order of 6.

We now study the steady-state properties of hoppers.
Imposing the steady-state condition on the mass conser-
vation, Eq. (21) gives

4 w =0 23
a( pv) =0. (23a)

Also, the momentum conservation Eq. (1b) with the force

(@) Space (b)

Eq. (22), in a steady state, becomes

0 1
e + sz(fzy cos O + fo. sin6)

D 9
_W%(fm:vz)' (23b)

We want to know the density and velocity fields which
satisfy Eq. (23). We start with a trial solution

p(z)=po + A(2),
(24)
v(z)= v, + B(x)b,

where v, = —4/pogWo/ fzy(po), the steady-state velocity
for tubes, Eq. (12). Substituting Eq. (24) into Eq. (23),
and ignoring terms of higher order than 6,

Space

FIG. 7. The evolution of density fields in tubes with ¢ = 0.5 and (a) L = 15, (b) 30, and (c) 45. High-density regions travel
downwards in (a) and (b), but travel upwards with larger fluctuations in (c).
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dA dB
vsWo— + poWo = —2pov,
dr dzx
(25)
df e dA dB
va f —-— + (2Dvsfzz + vasWO)_ + gWOA - 2vsf:cyB: szz:c - 2"Eng
dp dz dx

Since fzr and f,, are also functions of p(x), one has to know the exact form of these functions to find the solutions
of Eq. (25). Here we assume that f,.(p) can be approximated to f2 p™ for the range of densities found in a hopper.
Similarly, fgy =~ fgyp"‘. Since # < 1, the changes of A(x) and B(z) to z will also be slow. We therefore consider
variations up to the first order of z, that is, A(z) = Aoz + A; and B(z) = Boz + B;. Substituting f,., fy and
A(z), B(z) into Eq. (25), we obtain

PoVs

JA By = -2 ,
vs Ao + PoDo Wo

2gp0 = (mvffz(:)ypz)n_l - gWO)AO + 2vu)fq(:)ypng0

m— . m m mug A
vepoWoBo = —gWoA; + v2pT f2, + mf;)yvfpo 4, + 2f£yv8p0 By — Df2 v.p}y <230 + —0> .

Po

(26)

(c) Space

FIG. 7. (Continued).
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There are only three conditions in Eq. (26) for four un-
known variables. The other condition comes from the
freedom in choosing the origin of the z axis. We set the
origin so that B; = 0. Then, the solution of Eq. (26) is

2m v,
Bo= 3—mW, '’
__Po_6
AQ— 03_m (27)

Ae v? 2m _f0 mﬂ _
1= (m—2)gWo 3—m Do zzPo W0

_ A5 _ A{pivs(p:) + vepiAi (pi)8 + [piBo(pi) + v (pi) Ao(pi)]26}

Intuitive solutions for hoppers are that the magnitude
of the velocity increases, and the density decreases as
z is increased. Although the solution Eq. (27) becomes
intuitive for 0 < m < 3, it can also have very different
behaviors for other ranges of m.

Having obtained the steady state for hoppers, we now
proceed to study kinetic waves. The density and velocity
fields are described by Eq. (24) with one free parameter
po- Consider two regions of density, where py is chosen to
be p; and p,, respectively. The velocity of the interface
U}, between the regions, which can be calculated following
the way described in Sec. IT A, is

Time

Ap A{pivs(p:) + [Ao(ps) + A1(p:)z]0}

(b) Space (c)

FIG. 8. Density fields for a tube with L = 15 and N = 225 for several values of yn: (a) 7» = 1 x 103, (b) 2 x 103, and (c)

3 x 103. There is no sign of dynamic instability.
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We consider small fluctuations of density: p; = p and
0p = ps — p < 1. The velocity, up to the first order of 6,
is
dj d d
~ — = —|[pu, —[A :(p)]0
d
+ gy PBo(p) + vs(p) Ao (p)]26

—%wp)}%mo(mm + A (29)

The above velocity, Uy, is calculated at position z. One
should note that the density at the position is not p but
p + [Ao(p)z + A1(p)]#. We now compare the velocity
of density waves in hoppers and tubes. The velocity of
density waves in tubes U; at the above density is

_d dvs(p) | dv.(p) | d*v.(p)
Uy = d—p[pva(p)] + ( pe R B +p ap? >
x[Ao(p)z + A1(p)]6, (30)

(@) Space (b)

Time Time

Space

which is given by Eq. (13).

Therefore density waves also exist in hoppers, and their
velocity is given by Uy(8,p,z) = U; + C(p,x)0, where
C(p, ) is a complicated function of z and p.

III. MOLECULAR-DYNAMICS SIMULATIONS

A. Interactions between particles

We discuss the interaction between the particles used
in the MD simulations of granular flows. The force be-
tween two particles 7 and 7, in contact with each other,
is the following. Let the position of the center of particle
i (j) to be R; (R;), and r = R; — R;. In two dimen-
sions, we use a new coordinate system defined by the two
vectors i (normal) and § (shear). Here, n = r/|r|, and
§ is defined as rotating i clockwise by 7 /2. The normal
component F}" . of the force acting on particle i by j is

F,; =kn(a; +a; — |r|)3/2 — YnMe(V - 1), (31a)

(c) Space

FIG. 9. The density and velocity fields for hoppers with different opening angle. (a) and (b) 6 = 0°, (c) and (d) 1°, (e) and
(f) 4°. For small 8, there are two waves traveling in opposite directions, where the downward waves eventually dominate.
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where a; (a;) is the radius of particle ¢ (5), m; (m;) the
mass of particle ¢ (7), and v = dr/dt. The first term is
the Hertzian elastic force, where k., is the elastic constant
of the material and the constant -, of the second term is
the friction coefficient of a velocity dependent damping
term, m, is the effective mass, m;m;/(m; + m;). The

P
shear component F;_,; is given by

n

F;_,i = —vsme(v -s) — sgn(ds) min(k8|5s|,,u.|Fj_>i|),
(31b)

where the first term is a velocity dependent damping
term similar to that of Eq. (31a). The second term is
to simulate static friction, which requires a finite amount
of force (uF},;) to break a contact [34]. Here, u is the
friction coeflicient, ds the total shear displacement during
a contact, and k, the elastic constant of a virtual spring.
There are several studies on granular systems using sim-
ilar interactions. However, only a few of them [34-36]
include static friction. A particle can also interact with

(@) Space (e)

Space (f)

a wall. The force on particle ¢, in contact with a wall, is
given by Egs. (31) with me = m;, a; = 0 and r is the
shortest vector joining from a point in the wall to the
center of particle . A wall is assumed to be rigid, i.e., it
is not affected by the collisions with particles. Also, the
system is under a gravitational field g. We do not include
the rotation of the particles in the present simulation. A
detailed explanation of the interaction is given elsewhere

[36].

B. Density waves in vertical tubes
1. Waves without static friction

We first simulate granular flows without static friction.
Thus we set 4 = 0 and the shear force is only due to the
velocity dependent friction term in Eq. (31b). We study
the system in two dimensions. Tubes are modeled by two
parallel sidewalls of length L, and separated by distance

Space

FIG. 9. (Continued).
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W, between which particles flow (Fig. 4). We use a pe-
riodic boundary condition in the vertical direction. Par-
ticles coming out of the bottom of the tube are fed into
the top. In order to avoid a hexagonal packing formed
by monodisperse particles, we use polydisperse particles,
whose radii are drawn from the Gaussian distribution of
mean 0.1 and width 0.02. We initially arrange particles
to be equally spaced along the vertical direction, and cal-
culate the positions and the velocities of the particles at
subsequent steps using a fifth-order predictor-corrector
method.

In Fig. 5, we show the time evolutions of the densities
and the velocities of the particles with W = 1, L = 15,
and the number of particles N = 225. The density plots
are made as follows. We divide the tube into several re-
gions (bins) of equal height (typically, five times particle
diameter), and count the number of particles n; in bin i.
We set the gray scale of each bin to be proportional to
n;. We choose white for n; = d;, and black for n; = d,,
where d; (d,) is the lower (upper) bound for n;. If n; is
smaller than d; or larger than d,, the gray scale is chosen
to be white or black, respectively. In Fig. 5(a), we use
d; = 0 and d,, = 30. The density field at a given time step

(a) Space (b)

is plotted as one horizontal line, where boxes of different
gray scale represent bins of the tube. Here, the leftmost
box corresponds to the bin at the bottom of the tube.
The velocity plot is made using the same procedure as
above, except the gray scale is proportional to the aver-
age vertical velocity v; in bin ¢. In order to enhance the
contrast, we subtract the center of mass velocity from v;.
We choose white for v; and black for —v;. Here, we set
v; = 60. The time step is chosen to be 5.0 x 107°. The
time interval between the successive rows in the density
and velocity plots is 100 iterations. The parameters for
the simulation are k, = 1.0 x 10%, k, = 1.0 x 10%, and
Yn = ¥s = 500 between the particles. Between the par-
ticles and the walls, we use k, = 5 x 10% in order not
to allow the particles go through the bottom wall which
experience the largest force, while the other parameters
are kept to be the same.

In Fig. 5, one can see a region of high-density is be-
ing formed from the homogeneous system [37]. Also, a
high-density region may be split into two, or two regions
may merge to form one region. However, for most of the
time, these density fluctuations just travel with almost
constant velocity. These traveling density patterns are

Space

FIG. 10. The density fields
for a hopper of 6 = 1° with
() ¥» = 1 x 10®* and (b)
2x103%. The intensities (density
contrast) of waves are larger for
larger vn.
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first observed in simulations by Poschel [26]. Comparing
Figs. 5(a) and 5(b), one can notice correlations between
the density n; and the velocity v;. The particles seem
to travel slower (faster) in high- (low-) density regions,
which is very similar to traffic lows. This correlation is
one hint that the density waves may be of kinetic nature.
In order to systematically study the correlation, we mea-
sure the density dependence of the flux in a steady state.
We choose a bin, and we calculate the friction and grav-
ity force acting on the bin. Since we want to measure the
flux in a steady state (the total force is zero), we require
the total force (sum of the friction and the gravity) to
be smaller than r times the gravity, and we discard bins
if the requirement is not fulfilled. For bin ¢ in a steady
state, we measure the total flux, defined as j; = v;n;.
We calculate the density n; dependence of the average

(q) Space

flux j; for a system of fixed total number of particles N.
Here, the averages are taken over time. We measure the
flux-density curve for several different values of r ranging
from 0.1 to co. The results are not very sensitive to the
values of r, when we study the systems in a steady state.
We set 7 = 1.0 from now on. We also measure the curve
for several values of N = 150, 225, 280, 337. For large N,
we have an accurate estimate of j; for large values of n;,
but a poor one for small n;. The situation is opposite for
the systems of small N. For the intermediate values of
n;, however, all the systems give good estimates, which
agree with each other. In Fig. 6, we show the flux-density
curve averaged over the four values of V. The fact that
we have a well defined flux-density curve suggests that
the system is in a steady state, which implies that the
kinetic wave is sufficient for the description of the evo-

(b) Space

Time

FIG. 11. The density and velocity fields for a hopper with the open boundary condition. In (a) and (b) the fields for a
hopper of § = 1° without static friction, (c) and (d) for § = 1° with static friction, and (e) and (f) for § = 5° with static friction

are shown.
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lutions of the system. Furthermore, the curve resembles
that of a traffic flow, which is considered to be one of the
typical examples of kinetic waves [30].

One additional evidence that the density waves are of
kinetic nature is the dependence of the velocity of the
waves on the average density. The velocities of kinetic
waves are given by Eq. (8), which is the slope of the flux-
density curve, for small density fluctuations. From Fig.
6, we expect that the velocity is a large negative value for
a small density, approaches to zero, and becomes a large
positive number as the density is increased. We directly
measure the velocities of the waves from the slopes of
high-density regions such as the one shown in Fig. 5. In
Table I, we show the average velocities for several values
of N, where the average density (n;) is given by N/L.
In the table, one may note that the velocity is negative
(—41) for small N, and is increased to positive (113) for

(c) Space

large NV, which is exactly the way predicted by the theory
of kinetic wave. Furthermore, the measured velocities are
consistent with the local slopes of the flux-density curve
shown in Fig. 6, although the slopes cannot be accurately
determined due to the large error bars. Based on the
above evidence, as well as the theoretical argument given
in Sec. IIB1, we conclude that the above density waves
found in vertical tubes are kinetic waves.

We also want to discuss the origin of fluctuations in the
system. As shown above, density fluctuations (waves)
are formed from a uniform-density system. But kinetic
waves, as discussed in Sec. II A, cannot create fluctua-
tions. Also, some of the waves are split into two waves,
which cannot be described by the evolutions of kinetic
waves alone. There must be some sources of fluctuations
or “noises” in the system. Since the system is determinis-
tic, one might think the system cannot have noises. The

(d) Space

FIG. 11. (Continued).
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“noises” come from the fact that the equations of mo-
tion, Eq. (1), as well as the form of the friction force are
relations between averaged quantities. The fluctuations
around their averaged values, especially relevant in small
scale descriptions of systems, are identified as “noises.”

2. Waves with static friction

We next study the flows through vertical tubes witF
static friction. As discussed in Sec. IIB1, we expect
two types of behaviors depending on the friction coef-
ficient p. If u > pgW/P,, the system cannot move,
and stays as a static column. Otherwise, the particles
start to move, and form a stationary state. The setup we
used in the MD simulations is exactly the same as the
previous one (Fig. 4), where static friction is introduced
by choosing a nonzero u. Between the particles, we use
pupp = 0.5. We also set the shear friction coefficient -,
to be zero. We do simulations with W =1 and L = 15,
starting with N = 225 particles. All the other param-
eters are kept the same as above. In the simulations,
we find three types of behaviors depending on the fric-
tion coefficient between the walls and the particles pwp.
(1) If pwp > 1.0, the particles can move initially, but

(e) Space

they eventually form static column(s). (2) On the other
hand, if uwp < 0.6, the particles constantly increase
their speeds, and do not go into a steady state until the
end of simulations (50000 iterations). (3) In the inter-
mediate regime, 0.6 < uwp < 1.0, we find steady states,
where density waves travel with almost constant veloci-
ties. The static structures found in the first regime are
precisely what is expected from the theory. In the sec-
ond regime, however, the systems do not reach steady
states, in contrast to the theory. One possibility is that
the time needed to reach a steady state is larger than the
simulation time. To check this possibility we do longer
simulations of the system with uwp = 0.6, which does
not reach a steady state in 50000 iterations. We find
the system does reach a steady state at around 100000
iterations.

In the third regime, the simulations with L = 15
show traveling density fluctuations. We show the den-
sity evolutions in a tube of L = 15 in Fig. 7(a), where
pwp = 0.9 and the time interval between the successive
rows is 0.0025. Here, one can see two types of traveling
waves: (1) small density fluctuations which travel faster
and (2) large density fluctuations which travel slowly. We
believe that the first type is a “frozen” density pattern
which travels with the center of mass velocity, and the

(f) Space

FIG. 11. (Continued).
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second type is the one we are discussing in this paper.
In the figure, a region of high density travels with almost
constant velocity of —86 + 13. We also study density
waves for several values of L, keeping the average den-
sity constant. The evolution of density field for L = 30
is shown in Fig. 7(b). One can see a region of high den-
sity is traveling downwards with the velocity around —25.
However, the situation for L = 45, as shown in 7(c), is
quite different. The high-density region seems to travel
upwards, and the velocity seems to fluctuate more. These
two features are also found in a few additional runs we
study for L = 45. Since the clogging velocity v.(p) is the
same as the steady-state velocity of the uniform flow, we
expect clogging can occur due to “noises” in the system.
However, it is still not clear why these noises are more
prominent for larger systems. We also studied the system
with pwp = 0.7 and 0.8, and find essentially the same.

3. Comparison with the experiments

We now discuss the results of the experiments with
vertical tubes, and compare them with the theoretical
and simulational results obtained above. We first discuss
the experiments. Density waves in vertical tubes were
first found in the experiments by Péschel [26]. He found
two types of waves. (1) Regions of large densities occur
at random positions, and they travel with nonzero ve-
locity. (2) The separations between the regions of large
densities seem to be about the same, and they fluctu-
ate around certain positions [38]. The conditions needed
to obtain each type of wave are unknown. The flows
are also studied in vacuum, and surprisingly, the den-
sity waves disappear [39,40]. It is still not understood
how air affects the formation of density waves. Here, we
discuss one of the possible mechanisms. The conditions
for forming kinetic waves, as discussed in Sec. IIB1, are
fairly simple. One important condition is that the fric-
tion force should balance the driving force, which in this
case is gravity. It is possible that the friction force by
the sidewalls is too small to balance gravity. Consider a
block of particles falling down in a tube. If the density of
the block is large enough, air cannot easily pass through
the block, and the air pressure just behind the block can
be smaller than that of the front. The pressure difference
gives rise to a force to slow down the block, which acts as
an additional friction force. Since the pressure difference
is expected to increase by increasing the density and in-
creasing the velocity of the block, the friction force by
air can balance gravity at high velocity, and the balance
produces kinetic waves. As one can see, this argument is
largely speculative, and should be checked by careful ex-
periments. Especially, it should be checked whether there
is pressure difference between the front and the back of a
moving granular block of high density, and whether the
difference is enough to balance the gravity.

4. Dynamic waves

We conclude this section by discussing dynamic waves
in granular flows through tubes. As discussed in Sec.

IIB 2, we expect the granular flows to become less sta-
ble under density fluctuations for smaller coefficient of
restitution e. Since e is small for large normal damp-
ing coefficient v,, we expect the system to be less sta-
ble for large v,. We simulate the system with values of
Yo = 5 x 10%2,1 x 10%,2 x 103, 3 x 103, and study the
stability. In Fig. 8, we show the density fields of a tube
with L = 15 and N = 225 for several values of ~,,. Here,
the time intervals between the successive rows are 0.0025.
We do not find any sign of dynamic waves, even for longer
simulations. We also repeat the simulations with higher
density N = 337, and find that the results are essentially
the same. The coefficient of restitution e depends on the
relative velocity between the colliding particles for the
Hertzian contact force. Considering the scale of veloci-
ties found in tubes, e is roughly estimated to be 0.1 for
Yn = 3 x 103. It is possible that the dynamic instability
occurs at even larger values of «,. The limitation of the
constant time-step-type algorithm we are using is that
we have to decrease the time step to prevent a numeri-
cal instability, if we want to increase +,. For example,
the time step is chosen to be 5 x 107° for v, = 5 x 102,
and 1 x 107° for 7, = 3 x 103. Therefore we cannot
simulate systems of arbitrarily large v,,. One has to use
event-driven-type algorithms (for example, Ref. [24]) to
overcome this limitation.

C. Density waves in hoppers

In Sec. ITC, we presented a theory which predicts the
existence of kinetic waves in granular flows through hop-
pers. In that section, the velocity of the kinetic wave
in hoppers of opening angle 26 is shown, up to the first
order of 6, to be Uy (8,p,z) = U(p) + C(p,z)8. Here, p
is the packing fraction and z the position, and U;(p) the
velocity of kinetic waves in tubes, and C(p, z) is a com-
plicated function of p and z. We thus expect Uy for a
hopper of small 8 is not very different from that of tubes.
The conditions for the existence of dynamic waves are
too difficult to be obtained from the theory.

We study hoppers of length L = 15, bottom width
Wy = 1.0, and several values of the opening angle 26.
We apply a periodic boundary condition in the vertical
direction. The particles coming out of the bottom are
again fed into the top. The boundary condition, which is
not natural for the hopper geometry, can introduce some
artifacts to the system. We later check the results by
comparing with those from the open boundary condition.
The main reason for using the periodic boundary condi-
tion is that we can simulate the systems for a longer time,
which in effect allows us to study the systems of larger
sizes without actually increasing the length L (and the
number of particles). We initially arrange particles as a
square lattice in a hopper. The lattice constant is 0.1, the
average radius of the particles. The average number of
particles per unit area is very close to 25, the maximum
density allowed for the square packing. The randomness
in the initial configuration is introduced by the polydis-
persity of the particles. The interaction parameters are
chosen to be exactly the same as those for tubes.
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We first study the system without static friction. The
static friction coefficient p is chosen to be 0, and the
velocity dependent shear friction term v, to be 500. In
Fig. 9, we show the time evolutions of the density and the
velocity fields in hoppers. The plots are made in the same
way as Fig. 5 except the fact that the density is obtained
by dividing the number of particles in a bin by the area
of the bin, which is not constant for a hopper. The gray
scales are chosen to show clear contrast between the low-
and high-density (velocity) regions by controlling d; and
du ('Ul).

In Figs. 9(a) and 9(b), we show the density and the
velocity fields for a tube (# = 0) in order to serve as a
reference to compare with those for hoppers. The time
interval between the successive lines is 0.005. In Figs.
9(c) and 9(d), the fields for a small angle hopper (6 = 1°)
are shown. In the density plot [Fig. 9(c)], there are two
waves in the hopper, one travels upwards and the other
downwards. Comparing with the velocity plot [Fig. 9(d)],
the densities of the upward wave are strongly correlated
to the velocities, while there seems to be no such correla-
tion for the downward waves. The correlations found in
the upward waves are qualitatively the same as that of
the kinetic wave, i.e., the particles travel slowly (fast) in
the regions of high (low) density. It is quite possible that
the upward wave is of kinetic nature. Also, the velocities
of kinetic waves in hoppers with small opening angle are
expected to be very close to that of tubes. The fact that
the velocity of the upward waves (113+4) is very close to
that of the tube (93 £ 10) is one other support that the
wave is kinetic [41]. We now consider the waves which
travel downwards. The waves not only show no corre-
lations between the density and the velocity fields, but
also travel in the opposite direction to the kinetic waves
in the tube [Fig. 9(a)], which suggests that the waves are
probably not kinetic. Furthermore, the density contrasts
of the waves are constantly increasing, which is not possi-
ble for kinetic waves. The increments can be more clearly
seen in hoppers of larger opening angle as shown in Figs.
9(e) and 9(f) (¢ = 4°). The downward waves initially
coexist with the kinetic waves, but eventually dominate
the system. The above facts are still true for the largest
6 we study, § = 10°. The properties of the downward
waves listed above suggest that the downward waves are
of dynamic nature. According to the argument used for
the dynamic waves in tubes, dynamic waves will be more
easily formed using nonelastic particles. We check this
possibility by studying a hopper of § = 1° for differ-
ent values of v,. In Fig. 10, we show the density fields
for v, = 1 x 10 and 2 x 103. Comparing with that of
v = 5 x 10% [Fig. 9(c)], one can see the waves for larger
~r are indeed formed earlier, and their intensities (den-
sity contrast) are larger. This adds one more support
that the downward waves are dynamic. We also measure
the velocities of the dynamic waves for several values of
0. As shown in Table II, the magnitude of the velocity
is decreased as @ is increased. Following the trend, it is
quite possible that the velocity becomes zero for finite 6,
and changes its sign.

We now study hoppers with the open boundary condi-
tion. In Figs. 11(a) and 11(b), we show the density and

the velocity fields for a hopper of § = 1° and L = 30.
Here, we turn off static friction (x = 0), and we set
vYs = 5 x 102. One can hardly see any fluctuations in
the density field, but one can see some traveling patterns
in the velocity field. We now turn on static friction. We
set 7, = 0 and p # 0. The density and the velocity
fields with p = 0.5 are shown in Figs. 11(c) and 11(d).
One can now see upward traveling density waves. Fur-
thermore, the density field has strong correlations with
the velocity field, suggesting that the waves are kinetic.
Even though kinetic waves are present in the system in-
dependent of static friction, the amplitudes of the waves
are too small to be visible without it. Static friction pro-
vides an effective mechanism for creating large density
fluctuations. Also, the density waves are not present in
the hoppers of small L. The absence of density waves can
be caused by the fact that the particles need to travel cer-
tain distances to reach a steady state around which the
density waves can only be seen. All these results remain
valid for larger values of @ we have studied. For example,
we show the case of § = 5° in Figs. 11(e) and 11(f).

We also search for the dynamic waves in hoppers with
the open boundary condition. We simulate the system
with several values of «,, and check the instability of
creating dynamic waves. For the range of v, we have
studied (5 x 102 — 3 x 10%), we do not find the instability.
Again, the simulations for larger values of v, are limited
due to the algorithm we are using. Even though we do
not rule out dynamic waves in hoppers in general, the
dynamic instability found above seems to be an artifact
of the periodic boundary condition.

We now compare the results with the experiments.
Baxter et al. found density waves in a hopper only if
a certain amount of rough sands is mixed with smooth
sands [28]. The role of the rough sands is not clearly
established. It is possible that the rough sands form lo-
cal “arches,” thereby increasing density fluctuations. In
that case, the role played by the rough sands is the same
as that of static friction, which provides density fluctu-
ations to maintain kinetic waves. Also this is consistent
with the fact that the amplitudes of the density waves
are a smooth function of the fraction of the rough sands,
which suggests that the density waves in the experiments
are kinetic. The suggestion, of course, has to be checked
by experiments, for example, by measuring the correla-
tions between the density and the velocity fields.

IV. DISCUSSION

We have presented theoretical and numerical evidence
that the density waves found in the simulations of Poschel
are of kinetic nature. However, the density waves found
in the experiments are not fully understood. The first
and foremost problem is to find the form of the friction
force. In the MD simulations, the friction force is gen-
erated by the collisions of particles with the sidewalls.
In experiments, the collisional friction force seems to be
too small compared to gravity, and another friction force
related to air gives the dominant contribution. We pro-
posed a mechanism for how air can generate a friction
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force, which should be checked by experiments. We want
to emphasize that since the existence of kinetic waves is
not strongly dependent on the details of the friction force,
the density waves found in the experiments are very likely
to be kinetic waves.

We find conditions for the existence of dynamic waves
in a tube. The conditions depend on details of the force,
which we do not know. We numerically search for dy-
namic waves by increasing +,, since we expect dynamic
waves can be more easily created for inelastic particles.
Even for the largest v, we studied, we cannot find the
dynamic waves. It is possible that dynamic waves oc-
cur for even larger values of «,,. We are not able to check
the possibility, since the algorithm we are currently using
becomes very inefficient for larger values of 7,.

We also have theoretical and numerical evidence that
there are kinetic waves in hoppers. Especially, the kinetic
waves in hoppers with the open boundary condition are
visible only with static friction. This can be readily com-
pared with the fact that one needs a finite fraction of
rough sands to observe the density waves in the exper-
iments. Here, the role of rough sands can be creating
large density fluctuations to maintain kinetic waves just

like static friction. The suggestion that the density waves
in the experiments of hoppers are kinetic waves should
be checked, for example, by studying the correlation be-
tween the density and the velocity fields.

We are not able to do a linear stability analysis for hop-
pers, due to the complicated density and velocity fields
in the steady state. In the simulations with the periodic
boundary condition, we find another density wave, which
we believe to be dynamic on some evidence. Since we do
not find the dynamic waves with the open boundary con-
ditions, we think the above dynamic wave is an artifact
of the boundary condition. However, we do not rule out
the dynamic waves in hoppers, especially for large values
of v,.
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FIG. 10. The density fields
for a hopper of § = 1° with
(@) y» = 1 x 10* and (b)
2x10%. The intensities (density
contrast) of waves are larger for
larger yn.



FIG. 11. The density and velocity fields for a hopper with the open boundary condition. In (a) and (b) the fields for a
hopper of # = 1° without static friction, (c) and (d) for # = 1° with static friction, and (e) and (f) for # = 5° with static friction
are shown.



FIG. 11. (Continued).



FIG. 11. (Continued).



FIG. 5. Time evolutions of
(a) density and (b) velocity
fields of particles in a tube of
W = 1,H = 15. Fields at
a given time are shown as a
horizontal line of boxes. The
gray scale of each box is pro-
portional to the density and the
velocity in that region of the
tube. Regions of high density
are formed, and travel with al-
most constant velocity.



FIG. 7. The evolution of density fields in tubes with p = 0.5 and (a) L = 15, (b) 30, and (c) 45. High-density regions travel
downwards in (a) and (b), but travel upwards with larger fluctuations in (c).



FIG. 7. (Continued).



FIG. 8. Density fields for a tube with L = 15 and N = 225 for several values of v, (a) v» = 1 x 10, (b) 2 x 10*, and (c)
3 x 10%. There is no sign of dynamic instability.



FIG. 9. The density and velocity fields for hoppers with different opening angle. (a) and (b) # = 0°, (c) and (d) 1°, (e) and
(f) 4°. For small 8, there are two waves traveling in opposite directions, where the downward waves eventually dominate.



(f) Space

Time

FIG. 9. (Continued).



